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Abstract

This paper discusses the specification of Vector Error Correction forecasting models that are anchored by long-run
equilibrium relationships suggested by economic theory. These relations are identified in, and are common to, a
broad class of macroeconomic models. The models include four variables such as the HICP, the unemployment rate,
the real GDP, the GDP deflator, the 10-years government bond, the current account to GDP ratio and the exports to
GDP ratio. We examine the estimated model’s stability, and following the “two-step approach”, we assess the

forecasting power of the estimated VECM by performing dynamic forecasts within and out of sample.

1. Introduction

Numerous studies of macroeconomic time-series data suggest a need for careful
specification of the model’s multivariate stochastic structure. Following the classic work of
Nelson and Plosser (1982), many studies have demonstrated that macroeconomic time series data
likely include components generated by permanent (or at least highly persistent) shocks. Yet,
economic theory suggests that at least some subsets of economic variables do not drift through
time independently of each other; ultimately, some combination of the variables in these subsets,
perhaps nonlinear, reverts to the mean of a stable stochastic process. Granger (1981) defined
variables whose individual data generating processes are well-described as being driven by
permanent shocks as integrated of order 1, or 1(1), and defined those subsets of variables for
which there exist combinations (linear or nonlinear) that are well described as being driven by a
data generating process subject to only transitory shocks as cointegrated.

Many cointegration studies have shown that some individually 1(1) variables—including
real money balances, real income, inflation, and nominal interest rates—may be combined in
linear relationships that are stationary, or 1(0). Evidence on the stationarity of linear money
demand relations has been presented by Hoffman and Rasche (1991), Johansen and Juselius
(1990), Baba, Hendry, and Starr (1992), Stock and Watson (1993), Hoffman and Rasche
(1996a), Crowder, Hoffman and Rasche (1999) and Lucas (1994), among others. Evidence in
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favor of an equation that links the income velocity of money to nominal interest rates, in several
countries, is presented by Hoffman, Rasche and Tieslau (1995). Mishkin (1992), Crowder and
Hoffman (1996) and Crowder, Hoffman and Rasche (1999) present evidence of a Fisher
equation, and Campbell and Shiller (1987, 1988) have examined cointegration among yields on
assets with different terms to maturity.

Anderson, Hoffman and Rasche (2002) estimate a VECM model for the US that includes
six variables — real GDP, the GDP deflator, the CPI, M1, the federal funds rate, and the constant-
maturity yield on 10-year Treasury securities — and four cointegrating vectors. Their forecasts
from the model for the 1990s compare favorably to alternatives, including those made by
government agencies and private forecasters. Christofidis, Kourtellos and Stylianou (2004)
estimate a four variable VAR as well as a VECM model for the Cyprus economy using nominal
gross domestic product, total liquidity (M2), the average deposit rate, and the consumer price
index. The VECM estimation is extremely significant, since it not only provides useful
information on the long run equilibrium relationship of the variables but, in addition, is the basis
for forecasting analysis.

Our study describes an application of VECM models to the forecasting of important
Greek macroeconomic variables in the following quarters. We use quarterly data for the HICP,
the unemployment rate, the real GDP, the GDP deflator, the current account to GDP ratio, the
exports to GDP ratio and the 10-years government bond. An out-of-sample assessment shows
that the quality of the forecasts supplied by this model is satisfactory.

Our paper is organized as follows. Section 2 describes the VECM models as well as the
associated estimation and forecasting methods. Section 3 presents the data used in our study and
examines the forecasting performance of VECM models tested on their sample base and on an
out-of-sample basis.

2. Vector Autoregressive models and Cointegration Analysis
2.1. Vector Autoregressive models

The Vector Autoregressive model (VAR) was popularized by Sims (1980) as a model
which disregards the theoretical restrictions of simultaneous equation, or structural, models. The
model is formed by using characteristics of our data; therefore there are no restrictions that are

based on economic theory. However, economic theory still has an importance for VAR modeling



when it comes to the selection of variables. According to Sims there should not be any
distinction between endogenous and exogenous variables when there is true simultaneity among
a set of variables. The VAR model can be seen as a generalization of the univariate
autoregressive model and is used to capture the linear interdependencies in multiple time series.
Its purpose is to describe the evolution of a set of k endogenous variables based on their own lags
and the lags of the other variables in the model.

Regarding the assumptions of the VAR model, there are not many that need to be
considered. This is because the VAR model lets the data determine the model and uses no or
little theoretical information about the relationships between the variables. Except for the
assumption of white noise disturbance terms, it is beneficial to assume that all the variables in
the VAR model are stationary, to avoid spurious relationships and other undesirable effects. If
the variables are not stationary, they have to be transformed into stationarity by taking

differences. A standard k variables VAR model of order p has the following form:
P
Yi ::BO +ZA1yt4 +BX, +y,
i=1

where y, € R" isthe kx1 vector of the 1(1) endogenous variables. X is a vector of deterministic
variables which might include a trend and dummies, 4, € R® is a vector of intercepts, A is a

kxk coefficient matrix, B is a coefficient matrix, and u, € R* is a vector of innovations.

The selection of the final VAR for every combination of variables is based on the
criterion of statistical adequacy. A model is said to be statistically adequate if all the underlying
assumptions of the model are supported by the data. This is crucial because, if our model is
statistically adequate, we are able to support statistically hypothesis testing, forecasting, causality
tests, etc. More precisely, we may test for normality, for static and dynamic heteroskedasticity,
for serial correlation, for non linearity, for omitted variables, as well as stability. An important
issue in model specification is also model parameter stability. Often structural breaks

characterize macroeconomic variables over a long period of time.



2.2. Cointegration Analysis and Vector Error Correction Model

Economic theory often suggests that certain groups of economic variables should be
linked by a long-run equilibrium relationship. Although the variables may drift away from
equilibrium for a while, economic forces may be expected to act so as to restore equilibrium.
Variables which are I(1) tend to diverge as n—oo because their unconditional variances are
proportional to the sample size. Thus it might seem that such variables could never be expected
to obey any sort of long-run equilibrium relationship. But, in fact, it is possible for a group of
variables to be 1(1) and yet for certain linear combinations of those variables to be 1(0). If that is
the case, the variables are said to be cointegrated. If a group of variables is cointegrated, they
must obey an equilibrium relationship in the long run, although they may diverge substantially
from equilibrium in the short run.

A vector error correction model (VECM) is a restricted VAR model in differences. The
VECM specification restricts the long-run behavior of the endogenous variables to converge to
their long-run equilibrium relationships, while allowing for short-run dynamics (see, for
example, Engle and Granger (1987). This is done by including an error correction mechanism
(ECM) in the model, which has proven to be very useful when it comes to modeling non-
stationary time series. The VECM formulation of the corresponding VAR representation can be
written as:

p-1
Ay, = B, + iZl:l“iyt_i +11y, , + BX, +U,
The Tly, , is the error correction term and the kxr matrix /7 shows how the system reacts to

deviations from the long-run equilibrium. The short-run dynamics are ruled by T",. When r is

zero then a process in differences is appropriate and when r =k then in levels. For 0<r <k
there exists an ECM that pushes back deviations from the long-run equilibrium (characterized by
the co-integrating relations). For a solid review of the VECM, see, for example, Johansen (1988,
1991, 1995).

We may test for cointegration in the context of a system of equations. Johansen and
Juselius (1990, 1992) propose a test of this type, which is based on canonical correlations, using

a Likelihood Ratio Test. The application of this test requires the inclusion of exogenous
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variables, e.g., an intercept and trend in the longrun relationship and a linear trend in the short-
run relationship. In addition, Johansen, Mosconi and Nielsen (2000) as well as Hungnes (2005)
consider the presence of dummies in the cointegration relationship when the variables are
affected by a number of breaks.

After finding evidence supporting the existence of a cointegrating relationship among the
examined variables, someone may estimate a VECM. As mentioned before, a VEC Model is a
restricted VAR which has cointegration relations built into the specification so that it restricts the
long-run behaviour of the endogenous variables to converge to their cointegrating relationships
while allowing for short-run adjustment dynamics. The cointegration term is known as the
correction term since the deviation from long-run equilibrium is corrected gradually through a
series of partial short-run adjustments.

In the context of the VECM estimation, Pairwise Granger Causality Tests and Impulse
Response Function analysis can be used for economic policy evaluation (see, e.g. Sims, 1980).

The Impulse Response Function is the path followed by y, as it returns to equilibrium when we
shock the system by changing one of the innovations (u,) for one period and then returning it to

zero.

Another way of characterizing the dynamic behaviour of a VAR system is through
Forecast Error Variance Decomposition, which separates the variation in an endogenous variable
into the component shocks to the VAR. If, for example, shocks to one variable fail to explain the
forecast error variances of another variable (at all horizons), the second variable is said to be
exogenous with respect to the first one. The other extreme case is if the shocks to one variable
explain all forecast variance of the second variable at all horizons, so that the second variable is
entirely endogenous with respect to the first.

Since cointegration is present, it is extremely significant to model the short-run
adjustement structure, i.e the feedbacks to deviations from the long run relations, because it can
reveal information on the underlying economic structure. Modeling the feedback mechanisms in
cointegrated VAR models is typically done by testing the significance of the feedback
coefficients. These tests are called weak exogeneity tests, because certain sets of zero restrictions
imply long run weak exogeneity with respect to the cointegrating parameters. The concept of
weak exogeneity was defined by Engle, Hendry and Richard (1983) and is closely related to

testing the feedback coefficients. If all but one variable in a system are weakly exogenous, then
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efficient inference about the cointegration parameters can be conducted in a single equation
framework. Choosing valid weak exogeneity restrictions is of major importance, because policy
implications are sometimes based on the short-run adjustment structure. According to Johansen
(1995), there is a Likelihood Ratio Test that may be used to test weak exogeneity.

The VECM presents not only the long-run relationship of the variables, but it has an
additional significant advantage: forecasting. According to Anderson, Hoffman and Rasche
(2002) we may perform a “two-stage technique”, where we estimate an economic relation using
the technique of a VECM and, on a second stage, we assess the quality of forecast outcome.
Thus, in the context of stochastic simulation analysis we apply dynamic forecasts (multi-step
forecasts) using a large number of iterations within and out of the time bounds of the
observations of the sample. After forecasting, we assess how far the estimated model has
approximated the real-historical values. The closer the forecasts are to the real values, the better
the forecasting power of the VECM considered. The algorithm used for the implementation of
iterations is the well-known Gauss-Seidel, which works by evaluating each equation in the order
that it appears in the model, and uses the new value of the left-hand variable in an equation as the
value of that variable when it appears in any later equation.

3. Empirical analysis
3.1. Data

Our data set covers the period from the first quarter of 2000 until the first quarter of 2017.
All series were downloaded from Eurostat and OECD databases. Some variables that published
monthly have been converted to quarterly frequency by taking the average of the corresponding
quarter. Our data set includes the real GDP, the unemployment rate, the harmonized index of
consumer prices, the current account to GDP ratio, the exports to GDP ratio, the GDP deflator,
the 10-years government bond, the oil price and the real GDP of euro area. Appendix A provides
variable descriptions and sources.

All the series, except for the harmonized index of consumer prices, the current account to
GDP ratio and the oil price, were seasonally adjusted. So, using the TRAMO/SEATS filter we
proceed to seasonal adjustment of these series. Table 1 presents briefly the descriptive statistics
for those variables, while Figure 1, Figure 2 and Figure 3 presents the level, the level in

logarithms and the first difference graph respectively.



Table 1: Descriptive Statistics

Mean Median Maximum Minimum  Std. Dev.
Real GDP 53,006.03 52,103.90 63,334.50 45,479.80 6,069.05
Real GDP EURO 2,346,579.00 2,389,139.00 2,547,553.00 2,099,481.00 117,035.30
Unemployment rate 15.12 10.70 27.83 7.53 7.19
(%)
HICP 90.74 94.08 103.70 70.12 10.87
Deflator 91.23 95.05 101.82 74.30 8.52
Oil Prices 64.77 59.13 122.46 19.35 32.03
GB10Y (%) 7.62 5.47 25.40 3.41 4.96
Current Account to -0.08 -0.08 0.01 -0.16 0.05
GDP (%)
Exports to GDP (%) 24.49 23.17 34.35 18.33 4.70

Figure 1: level presentation of the variables
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Figures 1 and 2 suggest that most series have a trend, whereas the presence of structural

breaks is also obvious. It is crucial to incorporate the structural breaks using dummies in the

VAR model, since they affect their short run as well their long-run relationship. At first glance, it

seems that the real GDP, the unemployment rate, the real GDP of euro area, the ten year

government bond and the oil price have a structural break in 2008. The harmonized index of

consumer prices and the current account to GDP ratio have a structural break in 2010. The

influence of the structural break is more obvious in Figure 3, where the series are presented in

first differences.

Figure 2: log presentation of the variables
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Figure 3: first difference presentation of the variables
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3.2. Estimation of the model
3.2.1 Vector Autoregressive Model results

The estimation of a VAR model requires testing the stability of the series, beginning with
unit root tests because, when the series under investigation are not stable, then the estimated
results are not valid (spurious regression). After testing for the existence of a unit root in the
series in the context of exogenous as well as endogenous breaks, we find that all variables have a

unit root.

Table 2: VAR Lag Order Selection Criteria

Model 1

Endogenous variables: LOG(Y) LOG(HICP) LOG(UN) CAY
Exogenous variables: C D(LOG(OILP)) D(LOG(Y_EURO)) @TREND

Lag LogL LR FPE AlC SC HQ
0 470.033 NA 1.01E-11 -13.97025 -13.43501 -13.75906
1 822.9946  619.0405 3.18E-16 -24.3383 -23.26783*  -23.91593
2 855.2666 52.62809*  1.95e-16* -24.83897 -23.23327  -24.20542*
3 870.1084  22.37687 2.07E-16 -24.80333 -22.6624 -23.9586
4 888.7753  25.84657 1.99E-16  -24.88540*  -22.20923 -23.82948

Model 2
Endogenous variables: LOG(Y) LOG(P) LOG(GB10Y) LOG(UN) LOG(XY)
Exogenous variables: C @TREND

Lag LogL LR FPE AIC sC HQ
0 340.9016 NA 261E-11  -10.18159  -9.847067  -10.0496
1 726.9436  688.9364  3.92E-16  -21.29057  -20.11975*  -20.82861
2 763.0767 58.92474*  2.83e-16*  -21.63313*  -19.626  -20.84119*
3 777.8706  21.84951  4.04E-16  -21.3191  -18.47567  -20.19718

4 794.325 21.77048 5.67E-16 -21.05615 -17.37642 -19.60426

* indicates lag order selected by the criterion
LR: sequential modified LR test statistic (each test at 5% level), FPE: Final prediction error
AIC: Akaike information criterion, SC: Schwarz information criterion, HQ: Hannan-Quinn information criterion

So, we examine the short-run relationship among the series, through the estimation of
alternative VAR models over the whole sample period. Specifically, we estimate VAR models

using two sets of variables. First, we use as endogenous variables the real GDP, the HICP, the
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unemployment rate and the current account to GDP ratio. Moreover, we use the real GDP of
Eurozone and the oil prices as exogenous variables. The endogenous variables are in logarithms
except for the current account and the exogenous variables that are in first differences of their
logarithms. The specification of model 1 follows:

2 2 2 2
Yo = dy T ALY BV D BB+ O Bl + D Bcay, + B Aoil + BLAY +
i=1 i=1 i=1 i=1
2 2 2 2
Pe= py + AL+ Zﬂyp,i Yoi * Zﬂﬁ,i P+ Z BPu,; + Z prcay,; + BhAoil, + BLAY™ +
+lut +Zﬁy|yt i +Z’BP i pl i +ZIBU Iut i +Zﬂc |Cayt i +ﬁ0|IAOII —'—lByeA eUfO

Cayt /uca+/1 t+2ﬁy|yt i +Zﬂp|pt i Z ut |+Z Cayt i AOII +ﬂcaA eUfO t

In the second set, we use the real GDP, the GDP deflator, the unemployment rate, the ten
year government bond of Greece and the exports to GDP ratio. All variables are in logarithms.

So, model 2 takes the following form:

2 2 2 2
yt :/uy+ﬂ'yt+2ﬂyy,iyt—i+2ﬂg,i pt—i+2ﬂuy,iut—i+z gblgbt +z e><|exyt |+8
i=1 i=1 i=1 i=1
2 2 2 2 2
pt = /up +ﬂ'pt+2ﬂyp,i yt—i +Zﬂpp,i pt—i +Zﬂup,iut—i +Z g%,igbt—i +Z ex, |eth i +8
i=1 i=1 i=1 i=1 i=1
2 2 2 2 2
=, + AL +Zﬁ;,i Yioi +Zﬂ:.i P +Zﬂuu,iut—i +Zﬁ;b,igbt—i + Zﬂeux,iexyt—i +é&
i=1 i=1 i=1 i=1 i=1
gb /ugb+ﬂ’gbt+zﬁylyt |+Zﬂgb|pt |+Z gbut |+Zﬂgb| Z eX|eth |+g

2
exyt::uex-{_/?’ext—i_zlgylyt|+Zﬁp|pt| Z ut|+2ﬂgb|g z e><|exyt|+g
i=1

In order to test the statistical adequacy assumption, for the two sets of variables, we
employ a series of misspecification tests which can be found in Table 2. In light of the tests
undertaken, the VAR model includes two lags, a constant and a trend for both set of variables.
The corresponding estimated VAR models are presented in tables 3.1 and 3.2.

According to the estimation results, it is obvious that our variables are connected with a

short-run relationship. Tables 3.1 and 3.2 suggest that there is a strong positive relationship
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between variables and their first lagged value except for the current account to GDP ratio in

model 1.
Table 3.1: Vector Autoregression Estimates of Model 1
LOG(Y) LOG(HICP) LOG(UN) CAY
LOG(Y(-1)) 0.597656 -0.009773 -0.040752  -0.075136
[4.85626]  [-0.31023] [-0.12562]  [-0.48135]
LOG(Y(-2)) 0.337481 0.022408 -0.459169  0.153816
[2.57271] [0.66731] [-1.32791]  [0.92449]
LOG(HICP(-1)) -1.29366 1.275148 1.164292 -0.031698
[-2.97548]  [11.4575] [1.01591]  [-0.05748]
LOG(HICP(-2)) 1.340385 -0.353241 -0.416357  -0.315286
[3.14425]  [-3.23706] [-0.37052]  [-0.58312]
LOG(UN(-1)) -0.159695  0.023144 1.393038 0.081642
-0.05207 -0.01333 -0.13725 -0.06604
[-3.06708]  [1.73646] [10.1497]  [1.23625]
LOG(UN(-2))
0.111661 -0.017021 -0.563362  0.03585
[2.42719]  [-1.44536] [-4.64565] [ 0.61440]
CAY(-1)
0.033919 -0.051579 -0.108204  0.038747
[0.33496]  [-1.98980] [-0.40536]  [0.30168]
CAY(-2)
0.178496 -0.037731 0.195319 0.178855
[1.73210]  [-1.43033] [0.71902]  [1.36838]
C
0.434353 0.210157 1.817236 0.845671
[0.85204]  [1.61048] [1.35234]  [1.30793]
D(LOG(OILP))
0.012667 0.004772 -0.055802  -0.006534
[1.30652]  [1.92298] [-2.18351]  [-0.53132]
D(LOG(Y_EURO)) 1.027502 0.123427 -0.009205  -0.887018
[3.39256]  [1.59202] [-0.01153]  [-2.30908]
@TREND -0.000383  0.000348 -0.00224 0.001045
[-0.85328]  [3.02372] [-1.89142]  [1.83373]
R-squared 0.992122 0.999524 0.99658 0.926458
Adj. R-squared 0.990547 0.999429 0.995896 0.91175
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Log likelihood
AIC

Schwarz criterion

880.1303
-24.83971
-23.26023

Table 3.2: Vector Autoregression Estimates of Model 2

LOG(Y) LOG(P) LOG(GB10Y) LOG(UN) LOG(XY)

LOG(Y(-1)) 0.695352 0.002997 0.658509 -0.333354 0.639059
[4.71577] [0.03190] [ 0.48390] [-0.94023] [ 1.05500]
LOG(Y(-2)) 0.295002 0.153331 -1.864019 -0.189786 -0.275223
[ 1.97384] [ 1.61005] [-1.35141] [-0.52812] [-0.44826]

LOG(P(-1)) 0.362446  0.469051 2038829  -0.491674  0.115842
[ 1.77244] [ 3.59974] [ 1.08034] [-0.99996] [0.13790]
LOG(P(-2)) -0.403208 0.262111 -0.419569 1.073096 -0.114289
[-2.17014] [ 2.21395] [-0.24469] [2.40202]  [-0.14974]
LOG(GB10Y(-1)) -0.015932 -0.005716 1.252636 0.03378 0.087047
[-1.25092] [-0.70440] [ 10.6572] [ 1.10307] [ 1.66374]
LOG(GB10Y(-2)) 0.004562 0.016296 -0.522582 -0.01774 -0.062197
[0.34735]  [1.94714] [-4.31117] [-0.56173]  [-1.15271]
LOG(UN(-1)) -0.131775 0.063861 1.31817 1.160082 -0.146023
[-2.18068] [ 1.65852] [ 2.36365] [ 7.98417] [-0.58822]
LOG(UN(-2)) 0.158972 -0.063622 -1.490322 -0.302467 0.346632
[2.73128]  [-1.71545] [-2.77445]  [-2.16125] [ 1.44969]
LOG(XY(-1)) -0.060376 0.000947 0.494215 -0.027154 0.676482
[-1.88516] [0.04642] [ 1.67206] [-0.35262] [ 5.14167]
LOG(XY(-2)) 0.02269 0.006926 -0.252387 -0.058995 0.032458
[0.72402] [ 0.34684] [-0.87264] [-0.78290] [0.25212]
C 0.364585 -0.560786 6.118339 3.712286 -3.590339
[ 0.55854] [-1.34827] [ 1.01564] [ 2.36525] [-1.33891]
@TREND -0.00016 0.000907 -0.003985 -0.000576 -0.000336
[-0.38953] [ 3.45962] [-1.04981] [-0.58260] [-0.19888]
R-squared 0.990602 0.994197 0.960266 0.996605 0.94304
Adj. R-squared 0.988723 0.993037 0.952319 0.995926 0.931648
Log likelihood 781.8695
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AIC -21.54834

Schwarz criterion -19.57399
t-statistics in [ ]

3.2.2 Granger Causality Analysis

Our estimation results provide evidence which supports the existence of a short run
relationship among the variables. In order to verify this correlation we perform Granger
Causality Tests, which are presented in Tables 4.1 and 4.2 for each model correspondingly.
Particularly, we test the null hypothesis that there is no Granger Causality relationship in the
system, for the above two VAR models. For each equation in the VAR models, the tables display
(Wald) statistics for the joint significance of each and of all other lagged endogenous variables in
that equation. Consequently, the results obtained from the VAR models, are confirmed as well in

the Granger Causality analysis.

Table 4.1: Pairwise Granger Causality Tests-Block Exogeneity Wald Tests

Dependent variable: LOG(Y)

Excluded Chi-sq df Prob.
LOG(HICP) 9.968789 2 0.0068
LOG(UN) 9.455642 2 0.0088
CAY 3.256026 2 0.1963
All 38.78238 6 0

Dependent variable: LOG(HICP)

Excluded Chi-sq df Prob.
LOG(Y) 0.671763 2 0.7147
LOG(UN) 3.015286 2 0.2214
CAY 6.621385 2 0.0365
All 23.48745 6 0.0006

Dependent variable: LOG(UN)

Excluded Chi-sq df Prob.
LOG(Y) 7.232862 2 0.0269
LOG(HICP) 7.188783 2 0.0275
CAY 0.630585 2 0.7296
All 13.1224 6 0.0411

Dependent variable: CAY
Excluded Chi-sq df Prob.
LOG(Y) 1.171322 2 0.5567
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LOG(HICP)
LOG(UN)
All

6.671691
10.25958
28.33065

2
2
6

0.0356
0.0059
0.0001

Table 4.2: Pairwise Granger Causality Tests-Block Exogeneity Wald Tests

Dependent variable: LOG(Y)
Excluded

LOG(P)

LOG(GB10Y)

LOG(UN)

LOG(XY)

All

Dependent variable: LOG(P)
Excluded

LOG(Y)

LOG(GB10Y)

LOG(UN)

LOG(XY)

All

Dependent variable: LOG(GB10Y)
Excluded

LOG(Y)

LOG(P)

LOG(UN)

LOG(XY)

All

Dependent variable: LOG(UN)
Excluded

LOG(Y)

LOG(P)

LOG(GB10Y)

LOG(XY)

All

Dependent variable: LOG(XY)
Excluded

LOG(Y)

LOG(P)

LOG(GB10Y)

LOG(UN)

Chi-sq
4.7685
2.66451
8.967688
4.79716
39.62806

Chi-sq
9.577332
5.654132
2.955682
0.354617
33.45129

Chi-sq
3.396451
3.188408
8.325613
3.194155
16.66993

Chi-sq
7.166373
10.74706
1.474215
2.795834
26.65596

Chi-sq
1.82696
0.022648
2.838917
7.838473

df

0 NNDNNN

Prob.
0.0922

0.2639
0.0113
0.0908

Prob.
0.0083

0.0592
0.2281
0.8375
0.0001

Prob.
0.183

0.2031
0.0156
0.2025
0.0337

Prob.
0.0278

0.0046
0.4785
0.2471
0.0008

Prob.
0.4011

0.9887
0.2418
0.0199
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All 14.68694 8 0.0655

3.2.3 Cointegration Analysis

Although the VAR results provide information about the short-run relationship between
the macroeconomic variables, nevertheless we do not know what their long-run behaviour is.
The VECM not only gives an answer to the question of whether the short-run relationship of the
variables is persistent, but also allows us to perform forecasting.

The estimation of the VECM requires first to test for the existence of cointegration. We
follow the Johansen and Juselius (1990, 1992) approach which is based on canonical
correlations. As we determine that the number of lags is two in the above VAR models then we
should impose actually one lag in the VECM, in the cointegration test. The results are presented

in Tables 5.1 and 5.2 for each model respectively.

Table 5.1: Johansen Cointegration Test for Model 1
Trend assumption: Linear deterministic trend (restricted)
Series: LOG(Y) LOG(HICP) LOG(UN) CAY
Exogenous series: D(LOG(OILP)) D(LOG(Y_EURO))
Warning: Critical values assume no exogenous series
Lags interval (in first differences): 1to 1

Unrestricted Cointegration Rank Test (Trace)

Hypothesized Trace 0.05
No. of CE(s) Eigenvalue Statistic Critical Value  Prob.**
None * 0.590825 118.229 63.8761 0
At most 1 * 0.427183 58.35703 42.91525 0.0008
At most 2 0.161393 21.02541 25.87211 0.1784
At most 3 0.128726 9.232543 12.51798 0.1665

Trace test indicates 2 cointegrating eqn(s) at the 0.05 level

Unrestricted Cointegration Rank Test (Maximum Eigenvalue)

Hypothesized Max-Eigen 0.05
No. of CE(s) Eigenvalue Statistic Critical Value  Prob.**
None * 0.590825 59.872 32.11832 0
At most 1 * 0.427183 37.33162 25.82321 0.001
At most 2 0.161393 11.79287 19.38704 0.4347
At most 3 0.128726 9.232543 12.51798 0.1665

16



Max-eigenvalue test indicates 2 cointegrating eqn(s) at the 0.05 level
* denotes rejection of the hypothesis at the 0.05 level
**MacKinnon-Haug-Michelis (1999) p-values

Table 5.2: Johansen Cointegration Test for Model 2
Trend assumption: Linear deterministic trend (restricted)
Series: LOG(Y) LOG(P) LOG(GB10Y) LOG(UN) LOG(XY)
Lags interval (in first differences): 1 to 1

Unrestricted Cointegration Rank Test (Trace)

Hypothesized Trace 0.05
No. of CE(s) Eigenvalue Statistic Critical Value Prob.**
None * 0.526899 134.9179 88.8038 0
At most 1 * 0.376983 84.77207 63.8761 0.0003
At most 2 * 0.293844 53.06888 42.91525 0.0036
At most 3 * 0.26001 29.75826 25.87211 0.0156
At most 4 0.133276 9.58336 12.51798 0.1474

Trace test indicates 4 cointegrating eqgn(s) at the 0.05 level

Unrestricted Cointegration Rank Test (Maximum Eigenvalue)

Hypothesized Max-Eigen 0.05
No. of CE(s) Eigenvalue Statistic Critical Value Prob.**
None * 0.526899 50.14586 38.33101 0.0015
At most 1 0.376983 31.70319 32.11832 0.0561
At most 2 0.293844 23.31062 25.82321 0.1037
At most 3 * 0.26001 20.1749 19.38704 0.0384
At most 4 0.133276 9.58336 12.51798 0.1474

Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level
* denotes rejection of the hypothesis at the 0.05 level
**MacKinnon-Haug-Michelis (1999) p-values

Table 5.1 suggests that, taking into account the Trace Statistic and the Maximal
Eigenvalue Statistic, we identify the existence of two cointegrating relationships in the four-
variable VAR with two exogenous variables at the 5%. Regarding Table 5.2, the Trace Statistic
indicates the existence of four cointegrating relationships while the Maximal Eigenvalue Statistic
of one cointegrating equation. Taking into consideration the Maximal Eigenvalue Statistic we
proceed with one cointegrating equation at the 5% in the five variable VAR.

As a result, since both models exhibit two and one cointegrating relationships between

the variables respectively, we move a step further for the estimation of two VEC models which
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require not only the variables to be linked in the short run, but to be related in the long run via
the existence of cointegration.
3.2.4 Vector Error Correction Estimation

In this section we estimate a VECM model based on the four-variable VAR model with
two exogenous variables in which we identify two cointegrating relationships. The specification

of the first model follows:

Ay, =+, (Cl +CU+CY,  +C4 Py +CsU, + C6cayt—1) +a, (dl +dt+dyy, , +d,p, +dsU, + d6cayt—l) +

Yy + BoAP L + BiAU, + By Acay, + BisAoil, + ,BlsAyf e+ gty

Apt =, + Oy (C1 +Ct+CY,, +C, P +CU, + CGCayH) +a,, (dl + dzt + d?’yF1 + d4 Pyt dSuF1 + d6cayt71 ) +
LAY, 1 + PP + oAU, + [o,ACAY, ; + P AOIl, + B Ay, +&F

AU, = g1y + 0ty (€, + Gyt +C3 Y,y +C4 Py +CUy_y +Cgcay, ; )+ ag, (dy +d,t+dyy,, +d, p, +dsu,, +dgcay, )+
+Lu Ay, + B APy + BisAU, + By Acay,  + By Aol + ﬂsaAYte e +€tu

Acay, = 1, + atyy (C +Ct +CyY, s +C, Py + Gl +Cgeay, )+ ay, (d, +d,t+dyy, , +d,p, +dgu,, +dgcay, , )+

+ﬂ4lAyt—1 + ﬂ42Apt—l + ﬂ43Aut—1 + 1844Acayt—l + IB4SAOI It + ﬂ46Ayteur0 +gtca

The VECM results are presented in Table 6.1. The two cointegrated equations summarize
the long run behavior of the variables. The unemployment rate is related negatively with real
GDP and HICP while the current account to GDP ratio is related positively with real GDP and
negatively with HICP.,
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Table 6.1: Vector Error Correction Estimates of Model 1

Cointegrating Eq CointEql CointEqg2
LOG(Y(-1)) 1 0
LOG(HICP(-1)) 0 1
LOG(UN(-1)) 0.746981 0.033553
[ 7.23459] [ 0.81463]
CAY(-1) -1.564394 0.712404
[-2.04075] [ 2.32964]
@TREND(00Q1) -0.00067 -0.003704
[-0.49522] [-6.86692]
C -9.48235 -4.250204
Error Correction: D(LOG(Y)) D(LOG(HICP)) D(LOG(UN)) D(CAY)
CointEql -0.077591 0.014011 -0.138376 0.210679
[-2.04041] [ 1.43840] [-1.33210] [ 4.37153]
CointEq2 0.027445 -0.071297 0.459444 -0.483209
[0.27927] [-2.83219] [1.71143] [-3.87973]
D(LOG(Y(-1))) -0.299551 -0.03099 0.176936 -0.227474
[-2.40563] [-0.97157] [0.52017] [-1.44144]
D(LOG(HICP(-1))) -1.600233 0.415285 1.773348 0.588114
[-4.19051] [ 4.24544] [ 1.70000] [1.21522]
D(LOG(UN(-1))) -0.111685 0.016424 0.670524 0.007209
[-2.63532] [1.51287] [5.79192] [0.13421]
D(CAY(-1)) -0.126406 0.025325 -0.472863 -0.235765
[-1.27743] [ 0.99908] [-1.74933] [-1.87998]
C 0.006169 0.002647 -0.002563 0.000856
[ 2.54542] [4.26319] [-0.38711] [0.27852]
D(LOG(OILP)) 0.011489 0.0051 -0.057949 -0.008633
[1.17603] [2.03811] [-2.17147] [-0.69728]
D(LOG(Y_EURO)) 1.189203 0.08566 -1.003227 -1.116934
[ 4.20869] [1.18348] [-1.29975] [-3.11908]
R-squared 0.589426 0.760776 0.59974 0.503118
Adj. R-squared 0.532796 0.727779 0.544531 0.434583
Log likelihood 869.6176
AIC -24.5856
Schwarz criterion -23.07193

t-statistics in [ ]
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Then we estimate a VECM model based on the five-variable VAR model in which we

identify one cointegrating relationship. The VECM for model 2 follows:

Ayt = ILI’.I. + al (Cl + C2t + C3 yt—l + C4 pt—l + C5ut—1 + Cﬁgbt—l + C7exyt—1 ) +

+ﬂllAyt—l + ﬁlZApt—l + 1813Aut—1 + ﬂl4Agbt—l + ﬂlSAeth—l + gty

Apt = :uZ + a2 (Cl + CZt + C3 yl—l + C4 pl—l + CSUl—l + Cﬁgbt—l + C7exyt—l) +

+ﬂ21Ayt—l + ﬁZZApt—l + ﬂZSAut—l + ﬁ24Agbt—l + ﬂZSAeth—l + gtp

AU, = f1y + a5 (€ +C,t+CyY, 4 +C, Py +CeUy_ +Cogb_, +Crexy, )+

+ﬂ3lAyt—l + ﬂ32Apt—l + IBSSAut—l + ﬁ34Ag bt—l + ﬂSSAeth—l + gtu

Agbt = :u4 + 0.’4 (Cl + CZt + C3 yt—l + C4 pt—l + CSUt—l + Cngt—l + C7exyt—1) +

+IB4lAyt—l + 1842Apt—1 + ﬂ43Aut—1 + ﬁ44Agbt—l + ﬂ45Aeth—l + gtgb

Aexy, = g + ot (C, + Cyt +C Y,y +C, Py +CUy_; +Cogb_, +CreXy, )+

+ﬁ51Ayt—1 + ﬂSZApt—l + 1853Aut—1 + ﬂ54Agbt—1 + IBSSAexyt—l + gtexy

The VECM results are presented in Table 6.2. The one cointegrated equation indicates

that the deflator is related positively with real GDP while the unemployment rate, the ten-year

government bond and the exports to GDP ratio are related negatively with real GDP.
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Table 6.2: Vector Error Correction Estimates of Model 2

Cointegrating Eq CointEql
LOG(Y(-1)) 1
LOG(P(-1)) -1.813251
[-8.22962]
LOG(GB10Y(-1)) 0.016916
[0.64719]
LOG(UN(-1)) 0.061825
[ 1.36445]
LOG(XY(-1)) 0.099599
[ 1.24597]
@TREND(00Q1) 0.005125
[ 3.62503]
C -3.384602
Error Correction D(LOG(Y)) D(LOG(P)) D(LOG(GB10Y)) D(LOG(UN)) D(LOG(XY))
CointEql 0.055303 0.134215 0.14339 -0.147515 -0.290079
[1.51454] [6.23298] [0.43124] [-1.64083] [-1.96217]
D(LOG(Y(-1))) -0.143866 -0.161535 1.113195 0.179324 1.041283
[-0.93961] [-1.78903] [0.79842] [0.47569] [1.67976]
D(LOG(P(-1))) 0.421395 -0.233928 1.673773 -0.484957 -0.017445
[2.26105] [-2.12845] [ 0.98625] [-1.05686] [-0.02312]
D(LOG(GB10Y(-1))) -0.018479 -0.008002 0.404505 0.052236 0.078965
[-1.39882] [-1.02714] [3.36261] [ 1.60601] [ 1.47640]
D(LOG(UN(-1))) -0.121881 0.088687 0.911171 0.52099 -0.008679
[-2.32354] [2.86705] [ 1.90758] [ 4.03401] [-0.04087]
D(LOG(XY(-1))) -0.048782  -0.00654 0.233285 -0.015115 -0.055453
-0.03103 -0.0183 -0.28259 -0.07641 -0.12565
C [-1.57189] [-0.35734] [ 0.82551] [-0.19781] [-0.44134]
-0.000323  0.003535 -0.015058 0.006599 0.004364
R-squared 0.407418 0.422743 0.27521 0.530699 0.102839
Adj. R-squared 0.34816 0.365018 0.202731 0.483769 0.013123
Log likelihood 739.4835
AIC -20.85025
Schwarz criterion -19.50111

t-statistics in [ ]
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3.2.5 Variance Decomposition Analysis

Using the estimated models, which provide information for the long-run relationship of
the variables, we perform Variance Decomposition Analysis which is a way to characterize the
dynamic behavior of the models. Table 7.1 suggests that in the long run, the variation of real
GDP depends also on shocks to other variables. Specifically, this percentage increases through
time and, in the last period, 45% of the total change on the variance is due to the rest variables. A

similar situation holds for the rest variables with a notable impact on current account to GDP

ratio.
Table 7.1: Variance Decomposition Analysis of Model 1
Period Variance Decomposition of: LOG(Y) LOG(HICP) LOG(UN) CAY
depending on: LOG(Y) LOG(HICP) LOG(UN) CAY
1 100 81.93349  82.14983  83.0403
2 86.45101 74.43673 78.9368  73.58469
3 78.27917 70.02948 75.0162 58.1004
4 71.10336 66.91025 71.41415 46.73156
5 66.66653  65.24427  68.77732 38.692
6 63.25093  64.49884 66.9229 33.12338
7 60.79371 64.28488 65.63066 29.10132
8 58.81965 64.27218 64.68719 25.9204
9 57.24809 64.2428 63.96879 23.39324
10 55.94111 64.02293 63.39974 21.32649

The dynamic behavior of the second model is similar to that of the first. More
specifically, Table 7.2 indicates that the impact on variance decomposition of the GDP deflator
from other variables is very strong. Through time, the influence increases and in the last period,
52% of the variation of GDP deflator is due to the other variables. Regarding the unemployment
rate, the impact on its variation from the rest variables increases reaching a level of 39% in the
last period. Finally, the variation of the rest three variables, namely the real GDP, the ten-year
government bond and the exports to GDP ratio, depends also on shocks to other variables on

average 20%-25% during the last period.
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Consequently, in the long run, the link between the variables becomes more significant,

since the variation of a variable is due not only to own, but to shocks from other variables too.

Table 7.2: Variance Decomposition Analysis of Model 2

Period Variance Decomposition of: LOG(Y) LOG(P) LOG(GB10Y) LOG(UN) LOG(XY)
depending on: LOG(Y) LOG(P) LOG(GB10Y) LOG(UN) LOG(XY)

1 100 86.58745 92.91475 80.99054 98.02334
2 93.21738 73.92174 90.94771 80.1267 93.34485
3 90.00836 70.40339 88.50224 76.73418 92.21756
4 87.9087 68.93714 86.56102 73.5492 91.91664
5 86.09093 67.29713 85.15449 70.83589 91.4441
6 84.65423 65.2412 84.15034 68.44148 90.87414
7 83.53245 62.48846 83.43355 66.30596 90.21641
8 82.62466 58.79223 82.91994 64.38511 89.45064
9 81.87602 54.18156 82.55039 62.64186 88.58277
10 81.2477 48.90437 82.28425 61.05046 87.62429

3.2.6 Forecasting Performance

The VECMs are used to produce medium-term forecasts for main macroeconomic
variables. According to the estimated models, we make forecasts for the endogenous variables
for the next two years (eight quarters). Regarding the first model, we need to obtain forecasted
values for the two exogenous variables, namely the oil prices and the real GDP of Eurozone. For
this reason, we examine alternative univariate autoregressive models for each one of the two
variables and choose the model with the minimum root mean squared error. So, for oil price we
estimate an AR(3) specification while for the real GDP of Eurozone an AR(2) model. Then, we
may estimate their eight-quarter ahead forecasts and use them in order to estimate the forecasted
values of the endogenous variables.

The estimated forecasts of the endogenous variables are presented in Table 8. This table
displays the average of the growth rate of the seasonally adjusted real GDP, the growth rate of
the HICP, the growth rate of the GDP deflator, the unemployment rate, the current account to
GDP ratio and the exports to GDP ratio. All values are annually averages.

In a second stage, following Anderson et al (2002), we assess the forecasting
performance of the estimated VECMSs. We estimate each model during the sample period 2000:1

to 2014:4 and make forecasts for the next eight quarters. Then we compare the forecasted values
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with actual data for the periods 2015:1 to 2016:4 and compute the corresponding RMSE
criterion. These results are presented in the last column of Table 8. We may see that model 2

performs better in terms of real GDP.

Table 8: Forecasts

Model 1
Variables 2017 2018 RMSE
Real GDP seasonally adjusted -0.6% -0.08% 641.21
HICP 1.5% 1.00% 2.86
Unemployment rate 22.7%  23.1% 0.12
Current accountto GDP ratio -1.6% -1.2% 0.01
Model 2
Variables 2017 2018 RMSE
Real GDP seasonally adjusted 0.61% 1.11% 649.15
10-year government bond 6.87% 6.51% 2.15
GDP deflator 0.7% 1.87% 4.12
Unemployment rate 22.65% 22.62% 0.05
Exports to GDP ratio 32.14% 32.22% 0.04

Note: RMSE stands for Mean Squared Error.
4. Conclusion

This study has performed a forecasting exercise involving two time series datasets for
Greece. Due to the identification of cointegrating relationships in the variables, short-term
forecasts of GDP are estimated using Johansen’s VECM estimation method using an information
set that proxies for the components of expenditure based GDP within an open economy
framework. For this purpose, the models are estimated using quarterly data on real GDP, the
GDP price deflator, HICP, unemployment rate, 10yr government bond rates, exports to GDP
ratio and the current account to GDP ratio over the sample period 2000:1 to 2017:1. Then seven
quarters out of sample forecasts are generated under each model framework. Moreover, we
assess the forecasting performance of the estimated VECMs estimating each model during the
sample period 2000:1 to 2014:4, making forecasts for the next eight quarters and comparing the
forecasted values with actual data. In addition to the forecasts, an effort is made to examine the

relationships among the variables.
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Developing this research further could take into account the fact that the models
presented here are linear by their nature, and therefore fail to take into account nonlinearities in
the data. One of the responses to this problem within the literature has been the development of
DSGE models, which are capable of handling both structural changes, as well as nonlinearities.
The current trend in forecasting is dominated by the use of calibrated and estimated versions of
DSGE models that have been shown to produce better forecasts relative to traditional forecasting
methods in many cases (see, e.g, Zimmerman (2001)). Another potential area to further develop
the work presented here, could be to pool together the information set into a panel of European
countries. Within a panel VECM framework, the predictive ability of a candidate variable within
the information set could be explored for the entire panel of countries. Analysis such as this may

reveal potential interdependencies within the European group of countries.
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