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Abstract 

 
This paper discusses the specification of Vector Error Correction forecasting models that are anchored by long-run 

equilibrium relationships suggested by economic theory. These relations are identified in, and are common to, a 

broad class of macroeconomic models. The models include four variables such as the HICP, the unemployment rate, 

the real GDP, the GDP deflator, the 10-years government bond, the current account to GDP ratio and the exports to 

GDP ratio. We examine the estimated model’s stability, and following the “two-step approach”, we assess the 

forecasting power of the estimated VECM by performing dynamic forecasts within and out of sample. 

 

1. Introduction 

Numerous studies of macroeconomic time-series data suggest a need for careful 

specification of the model’s multivariate stochastic structure. Following the classic work of 

Nelson and Plosser (1982), many studies have demonstrated that macroeconomic time series data 

likely include components generated by permanent (or at least highly persistent) shocks. Yet, 

economic theory suggests that at least some subsets of economic variables do not drift through 

time independently of each other; ultimately, some combination of the variables in these subsets, 

perhaps nonlinear, reverts to the mean of a stable stochastic process. Granger (1981) defined 

variables whose individual data generating processes are well-described as being driven by 

permanent shocks as integrated of order 1, or I(1), and defined those subsets of variables for 

which there exist combinations (linear or nonlinear) that are well described as being driven by a 

data generating process subject to only transitory shocks as cointegrated. 

Many cointegration studies have shown that some individually I(1) variables—including 

real money balances, real income, inflation, and nominal interest rates—may be combined in 

linear relationships that are stationary, or I(0). Evidence on the stationarity of linear money 

demand relations has been presented by Hoffman and Rasche (1991), Johansen and Juselius 

(1990), Baba, Hendry, and Starr (1992), Stock and Watson (1993), Hoffman and Rasche 

(1996a), Crowder, Hoffman and Rasche (1999) and Lucas (1994), among others. Evidence in 
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favor of an equation that links the income velocity of money to nominal interest rates, in several 

countries, is presented by Hoffman, Rasche and Tieslau (1995). Mishkin (1992), Crowder and 

Hoffman (1996) and Crowder, Hoffman and Rasche (1999) present evidence of a Fisher 

equation, and Campbell and Shiller (1987, 1988) have examined cointegration among yields on 

assets with different terms to maturity. 

Anderson, Hoffman and Rasche (2002) estimate a VECM model for the US that includes 

six variables – real GDP, the GDP deflator, the CPI, M1, the federal funds rate, and the constant-

maturity yield on 10-year Treasury securities – and four cointegrating vectors. Their forecasts 

from the model for the 1990s compare favorably to alternatives, including those made by 

government agencies and private forecasters. Christofidis, Kourtellos and Stylianou (2004) 

estimate a four variable VAR as well as a VECM model for the Cyprus economy using nominal 

gross domestic product, total liquidity (M2), the average deposit rate, and the consumer price 

index. The VECM estimation is extremely significant, since it not only provides useful 

information on the long run equilibrium relationship of the variables but, in addition, is the basis 

for forecasting analysis. 

Our study describes an application of VECM models to the forecasting of important 

Greek macroeconomic variables in the following quarters. We use quarterly data for the HICP, 

the unemployment rate, the real GDP, the GDP deflator, the current account to GDP ratio, the 

exports to GDP ratio and the 10-years government bond. An out-of-sample assessment shows 

that the quality of the forecasts supplied by this model is satisfactory.  

Our paper is organized as follows. Section 2 describes the VECM models as well as the 

associated estimation and forecasting methods. Section 3 presents the data used in our study and 

examines the forecasting performance of VECM models tested on their sample base and on an 

out-of-sample basis. 

 

2. Vector Autoregressive models and Cointegration Analysis 

2.1. Vector Autoregressive models 

The Vector Autoregressive model (VAR) was popularized by Sims (1980) as a model 

which disregards the theoretical restrictions of simultaneous equation, or structural, models. The 

model is formed by using characteristics of our data; therefore there are no restrictions that are 

based on economic theory. However, economic theory still has an importance for VAR modeling 
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when it comes to the selection of variables. According to Sims there should not be any 

distinction between endogenous and exogenous variables when there is true simultaneity among 

a set of variables. The VAR model can be seen as a generalization of the univariate 

autoregressive model and is used to capture the linear interdependencies in multiple time series. 

Its purpose is to describe the evolution of a set of k endogenous variables based on their own lags 

and the lags of the other variables in the model. 

Regarding the assumptions of the VAR model, there are not many that need to be 

considered. This is because the VAR model lets the data determine the model and uses no or 

little theoretical information about the relationships between the variables. Except for the 

assumption of white noise disturbance terms, it is beneficial to assume that all the variables in 

the VAR model are stationary, to avoid spurious relationships and other undesirable effects. If 

the variables are not stationary, they have to be transformed into stationarity by taking 

differences. A standard k variables VAR model of order p has the following form: 
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where 
ty  ∈ 

kR  is the 1k   vector of the I(1) endogenous variables. X is a vector of deterministic 

variables which might include a trend and dummies, 
0  ∈ kR  is a vector of intercepts, 

iA  is a 

k k  coefficient matrix, B is a coefficient matrix, and 
tu ∈ kR  is a vector of innovations. 

The selection of the final VAR for every combination of variables is based on the 

criterion of statistical adequacy. A model is said to be statistically adequate if all the underlying 

assumptions of the model are supported by the data. This is crucial because, if our model is 

statistically adequate, we are able to support statistically hypothesis testing, forecasting, causality 

tests, etc. More precisely, we may test for normality, for static and dynamic heteroskedasticity, 

for serial correlation, for non linearity, for omitted variables, as well as stability. An important 

issue in model specification is also model parameter stability. Often structural breaks 

characterize macroeconomic variables over a long period of time. 
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2.2. Cointegration Analysis and Vector Error Correction Model 

Economic theory often suggests that certain groups of economic variables should be 

linked by a long-run equilibrium relationship. Although the variables may drift away from 

equilibrium for a while, economic forces may be expected to act so as to restore equilibrium. 

Variables which are I(1) tend to diverge as n→∞ because their unconditional variances are 

proportional to the sample size. Thus it might seem that such variables could never be expected 

to obey any sort of long-run equilibrium relationship. But, in fact, it is possible for a group of 

variables to be I(1) and yet for certain linear combinations of those variables to be I(0). If that is 

the case, the variables are said to be cointegrated. If a group of variables is cointegrated, they 

must obey an equilibrium relationship in the long run, although they may diverge substantially 

from equilibrium in the short run. 

A vector error correction model (VECM) is a restricted VAR model in differences. The 

VECM specification restricts the long-run behavior of the endogenous variables to converge to 

their long-run equilibrium relationships, while allowing for short-run dynamics (see, for 

example, Engle and Granger (1987). This is done by including an error correction mechanism 

(ECM) in the model, which has proven to be very useful when it comes to modeling non-

stationary time series. The VECM formulation of the corresponding VAR representation can be 

written as: 
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The 
1ty   is the error correction term and the k r  matrix Π shows how the system reacts to 

deviations from the long-run equilibrium. The short-run dynamics are ruled by 
i . When r is 

zero then a process in differences is appropriate and when r k  then in levels. For 0 r k   

there exists an ECM that pushes back deviations from the long-run equilibrium (characterized by 

the co-integrating relations). For a solid review of the VECM, see, for example, Johansen (1988, 

1991, 1995). 

We may test for cointegration in the context of a system of equations. Johansen and 

Juselius (1990, 1992) propose a test of this type, which is based on canonical correlations, using 

a Likelihood Ratio Test. The application of this test requires the inclusion of exogenous 
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variables, e.g., an intercept and trend in the longrun relationship and a linear trend in the short-

run relationship. In addition, Johansen, Mosconi and Nielsen (2000) as well as Hungnes (2005) 

consider the presence of dummies in the cointegration relationship when the variables are 

affected by a number of breaks.  

After finding evidence supporting the existence of a cointegrating relationship among the 

examined variables, someone may estimate a VECM. As mentioned before, a VEC Model is a 

restricted VAR which has cointegration relations built into the specification so that it restricts the 

long-run behaviour of the endogenous variables to converge to their cointegrating relationships 

while allowing for short-run adjustment dynamics. The cointegration term is known as the 

correction term since the deviation from long-run equilibrium is corrected gradually through a 

series of partial short-run adjustments. 

In the context of the VECM estimation, Pairwise Granger Causality Tests and Impulse 

Response Function analysis can be used for economic policy evaluation (see, e.g. Sims, 1980). 

The Impulse Response Function is the path followed by 
ty  as it returns to equilibrium when we 

shock the system by changing one of the innovations (
tu ) for one period and then returning it to 

zero.  

Another way of characterizing the dynamic behaviour of a VAR system is through 

Forecast Error Variance Decomposition, which separates the variation in an endogenous variable 

into the component shocks to the VAR. If, for example, shocks to one variable fail to explain the 

forecast error variances of another variable (at all horizons), the second variable is said to be 

exogenous with respect to the first one. The other extreme case is if the shocks to one variable 

explain all forecast variance of the second variable at all horizons, so that the second variable is 

entirely endogenous with respect to the first. 

Since cointegration is present, it is extremely significant to model the short-run 

adjustement structure, i.e the feedbacks to deviations from the long run relations, because it can 

reveal information on the underlying economic structure. Modeling the feedback mechanisms in 

cointegrated VAR models is typically done by testing the significance of the feedback 

coefficients. These tests are called weak exogeneity tests, because certain sets of zero restrictions 

imply long run weak exogeneity with respect to the cointegrating parameters. The concept of 

weak exogeneity was defined by Engle, Hendry and Richard (1983) and is closely related to 

testing the feedback coefficients. If all but one variable in a system are weakly exogenous, then 
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efficient inference about the cointegration parameters can be conducted in a single equation 

framework. Choosing valid weak exogeneity restrictions is of major importance, because policy 

implications are sometimes based on the short-run adjustment structure. According to Johansen 

(1995), there is a Likelihood Ratio Test that may be used to test weak exogeneity.  

The VECM presents not only the long-run relationship of the variables, but it has an 

additional significant advantage: forecasting. According to Anderson, Hoffman and Rasche 

(2002) we may perform a “two-stage technique”, where we estimate an economic relation using 

the technique of a VECM and, on a second stage, we assess the quality of forecast outcome. 

Thus, in the context of stochastic simulation analysis we apply dynamic forecasts (multi-step 

forecasts) using a large number of iterations within and out of the time bounds of the 

observations of the sample. After forecasting, we assess how far the estimated model has 

approximated the real-historical values. The closer the forecasts are to the real values, the better 

the forecasting power of the VECM considered. The algorithm used for the implementation of 

iterations is the well-known Gauss-Seidel, which works by evaluating each equation in the order 

that it appears in the model, and uses the new value of the left-hand variable in an equation as the 

value of that variable when it appears in any later equation. 

 

3. Empirical analysis 

3.1. Data 

Our data set covers the period from the first quarter of 2000 until the first quarter of 2017. 

All series were downloaded from Eurostat and OECD databases. Some variables that published 

monthly have been converted to quarterly frequency by taking the average of the corresponding 

quarter. Our data set includes the real GDP, the unemployment rate, the harmonized index of 

consumer prices, the current account to GDP ratio, the exports to GDP ratio, the GDP deflator, 

the 10-years government bond, the oil price and the real GDP of euro area. Appendix A provides 

variable descriptions and sources.  

All the series, except for the harmonized index of consumer prices, the current account to 

GDP ratio and the oil price, were seasonally adjusted. So, using the TRAMO/SEATS filter we 

proceed to seasonal adjustment of these series. Table 1 presents briefly the descriptive statistics 

for those variables, while Figure 1, Figure 2 and Figure 3 presents the level, the level in 

logarithms and the first difference graph respectively.  
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Table 1: Descriptive Statistics 

   Mean  Median  Maximum  Minimum  Std. Dev. 

Real GDP 53,006.03 52,103.90 63,334.50 45,479.80 6,069.05 

Real GDP EURO 2,346,579.00 2,389,139.00 2,547,553.00 2,099,481.00 117,035.30 

Unemployment rate 

(%) 

15.12 10.70 27.83 7.53 7.19 

HICP 90.74 94.08 103.70 70.12 10.87 

Deflator 91.23 95.05 101.82 74.30 8.52 

Oil Prices 64.77 59.13 122.46 19.35 32.03 

GB10Y (%) 7.62 5.47 25.40 3.41 4.96 

Current Account to 

GDP (%) 

-0.08 -0.08 0.01 -0.16 0.05 

Exports to GDP (%) 24.49 23.17 34.35 18.33 4.70 

 

 

Figure 1: level presentation of the variables 
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Figures 1 and 2 suggest that most series have a trend, whereas the presence of structural 

breaks is also obvious. It is crucial to incorporate the structural breaks using dummies in the 

VAR model, since they affect their short run as well their long-run relationship. At first glance, it 

seems that the real GDP, the unemployment rate, the real GDP of euro area, the ten year 

government bond and the oil price have a structural break in 2008. The harmonized index of 

consumer prices and the current account to GDP ratio have a structural break in 2010. The 

influence of the structural break is more obvious in Figure 3, where the series are presented in 

first differences.  

 

Figure 2: log presentation of the variables 
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Figure 3: first difference presentation of the variables 
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3.2. Estimation of the model 

3.2.1 Vector Autoregressive Model results 

The estimation of a VAR model requires testing the stability of the series, beginning with 

unit root tests because, when the series under investigation are not stable, then the estimated 

results are not valid (spurious regression). After testing for the existence of a unit root in the 

series in the context of exogenous as well as endogenous breaks, we find that all variables have a 

unit root.  

 

Table 2: VAR Lag Order Selection Criteria 

Model 1             

Endogenous variables: LOG(Y) LOG(HICP) LOG(UN) CAY  

  Exogenous variables: C D(LOG(OILP)) D(LOG(Y_EURO)) @TREND 

 

        Lag LogL LR FPE AIC SC HQ 

0 470.033 NA 1.01E-11 -13.97025 -13.43501 -13.75906 

1 822.9946 619.0405 3.18E-16 -24.3383 -23.26783* -23.91593 

2 855.2666 52.62809* 1.95e-16* -24.83897 -23.23327 -24.20542* 

3 870.1084 22.37687 2.07E-16 -24.80333 -22.6624 -23.9586 

4 888.7753 25.84657 1.99E-16 -24.88540* -22.20923 -23.82948 

       Model 2 

      Endogenous variables: LOG(Y) LOG(P) LOG(GB10Y) LOG(UN) LOG(XY)  

 Exogenous variables: C @TREND  

    

        Lag LogL LR FPE AIC SC HQ 

0 340.9016 NA 2.61E-11 -10.18159 -9.847067 -10.0496 

1 726.9436 688.9364 3.92E-16 -21.29057 -20.11975* -20.82861 

2 763.0767 58.92474* 2.83e-16* -21.63313* -19.626 -20.84119* 

3 777.8706 21.84951 4.04E-16 -21.3191 -18.47567 -20.19718 

4 794.325 21.77048 5.67E-16 -21.05615 -17.37642 -19.60426 

* indicates lag order selected by the criterion  

 LR: sequential modified LR test statistic (each test at 5% level), FPE: Final prediction error  

 AIC: Akaike information criterion, SC: Schwarz information criterion, HQ: Hannan-Quinn information criterion  
 

So, we examine the short-run relationship among the series, through the estimation of 

alternative VAR models over the whole sample period. Specifically, we estimate VAR models 

using two sets of variables. First, we use as endogenous variables the real GDP, the HICP, the 
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unemployment rate and the current account to GDP ratio. Moreover, we use the real GDP of 

Eurozone and the oil prices as exogenous variables. The endogenous variables are in logarithms 

except for the current account and the exogenous variables that are in first differences of their 

logarithms. The specification of model 1 follows: 
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In the second set, we use the real GDP, the GDP deflator, the unemployment rate, the ten 

year government bond of Greece and the exports to GDP ratio. All variables are in logarithms. 

So, model 2 takes the following form: 
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In order to test the statistical adequacy assumption, for the two sets of variables, we 

employ a series of misspecification tests which can be found in Table 2. In light of the tests 

undertaken, the VAR model includes two lags, a constant and a trend for both set of variables. 

The corresponding estimated VAR models are presented in tables 3.1 and 3.2. 

According to the estimation results, it is obvious that our variables are connected with a 

short-run relationship. Tables 3.1 and 3.2 suggest that there is a strong positive relationship 
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between variables and their first lagged value except for the current account to GDP ratio in 

model 1. 

Table 3.1: Vector Autoregression Estimates of Model 1 

 
LOG(Y) LOG(HICP) LOG(UN) CAY 

LOG(Y(-1)) 0.597656 -0.009773 -0.040752 -0.075136 

 
[ 4.85626] [-0.31023] [-0.12562] [-0.48135] 

 
    

LOG(Y(-2)) 0.337481 0.022408 -0.459169 0.153816 

 
[ 2.57271] [ 0.66731] [-1.32791] [ 0.92449] 

 
    

LOG(HICP(-1)) -1.29366 1.275148 1.164292 -0.031698 

 
[-2.97548] [ 11.4575] [ 1.01591] [-0.05748] 

 
    

LOG(HICP(-2)) 1.340385 -0.353241 -0.416357 -0.315286 

 
[ 3.14425] [-3.23706] [-0.37052] [-0.58312] 

 
    

LOG(UN(-1)) -0.159695 0.023144 1.393038 0.081642 

 
-0.05207 -0.01333 -0.13725 -0.06604 

 
[-3.06708] [ 1.73646] [ 10.1497] [ 1.23625] 

LOG(UN(-2))     

 
0.111661 -0.017021 -0.563362 0.03585 

 
[ 2.42719] [-1.44536] [-4.64565] [ 0.61440] 

CAY(-1)     

 
0.033919 -0.051579 -0.108204 0.038747 

 
[ 0.33496] [-1.98980] [-0.40536] [ 0.30168] 

CAY(-2)     

 
0.178496 -0.037731 0.195319 0.178855 

 
[ 1.73210] [-1.43033] [ 0.71902] [ 1.36838] 

C     

 
0.434353 0.210157 1.817236 0.845671 

 
[ 0.85204] [ 1.61048] [ 1.35234] [ 1.30793] 

D(LOG(OILP))     

 
0.012667 0.004772 -0.055802 -0.006534 

 
[ 1.30652] [ 1.92298] [-2.18351] [-0.53132] 

 
    

D(LOG(Y_EURO)) 1.027502 0.123427 -0.009205 -0.887018 

 
[ 3.39256] [ 1.59202] [-0.01153] [-2.30908] 

 
    

@TREND -0.000383 0.000348 -0.00224 0.001045 

  [-0.85328] [ 3.02372] [-1.89142] [ 1.83373] 

 R-squared 0.992122 0.999524 0.99658 0.926458 

 Adj. R-squared 0.990547 0.999429 0.995896 0.91175 
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 Log likelihood 880.1303 

 
  

AIC -24.83971 

 
  

 Schwarz criterion -23.26023       

Table 3.2: Vector Autoregression Estimates of Model 2 

 

LOG(Y) LOG(P) LOG(GB10Y) LOG(UN) LOG(XY) 

LOG(Y(-1)) 0.695352 0.002997 0.658509 -0.333354 0.639059 

 

[ 4.71577] [ 0.03190] [ 0.48390] [-0.94023] [ 1.05500] 

 

     

LOG(Y(-2)) 0.295002 0.153331 -1.864019 -0.189786 -0.275223 

 

[ 1.97384] [ 1.61005] [-1.35141] [-0.52812] [-0.44826] 

 

     

LOG(P(-1)) 0.362446 0.469051 2.038829 -0.491674 0.115842 

 

[ 1.77244] [ 3.59974] [ 1.08034] [-0.99996] [ 0.13790] 

 

     

LOG(P(-2)) -0.403208 0.262111 -0.419569 1.073096 -0.114289 

 

[-2.17014] [ 2.21395] [-0.24469] [ 2.40202] [-0.14974] 

 

     

LOG(GB10Y(-1)) -0.015932 -0.005716 1.252636 0.03378 0.087047 

 

[-1.25092] [-0.70440] [ 10.6572] [ 1.10307] [ 1.66374] 

 

     

LOG(GB10Y(-2)) 0.004562 0.016296 -0.522582 -0.01774 -0.062197 

 

[ 0.34735] [ 1.94714] [-4.31117] [-0.56173] [-1.15271] 

 

     

LOG(UN(-1)) -0.131775 0.063861 1.31817 1.160082 -0.146023 

 

[-2.18068] [ 1.65852] [ 2.36365] [ 7.98417] [-0.58822] 

 

     

LOG(UN(-2)) 0.158972 -0.063622 -1.490322 -0.302467 0.346632 

 

[ 2.73128] [-1.71545] [-2.77445] [-2.16125] [ 1.44969] 

 

     

LOG(XY(-1)) -0.060376 0.000947 0.494215 -0.027154 0.676482 

 

[-1.88516] [ 0.04642] [ 1.67206] [-0.35262] [ 5.14167] 

 

     

LOG(XY(-2)) 0.02269 0.006926 -0.252387 -0.058995 0.032458 

 

[ 0.72402] [ 0.34684] [-0.87264] [-0.78290] [ 0.25212] 

 

     

C 0.364585 -0.560786 6.118339 3.712286 -3.590339 

 

[ 0.55854] [-1.34827] [ 1.01564] [ 2.36525] [-1.33891] 

 

     

@TREND -0.00016 0.000907 -0.003985 -0.000576 -0.000336 

  [-0.38953] [ 3.45962] [-1.04981] [-0.58260] [-0.19888] 

 R-squared 0.990602 0.994197 0.960266 0.996605 0.94304 

 Adj. R-squared 0.988723 0.993037 0.952319 0.995926 0.931648 

 Log likelihood 781.8695 
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AIC -21.54834 

     Schwarz criterion -19.57399         
t-statistics in [ ] 

3.2.2 Granger Causality Analysis 

Our estimation results provide evidence which supports the existence of a short run 

relationship among the variables. In order to verify this correlation we perform Granger 

Causality Tests, which are presented in Tables 4.1 and 4.2 for each model correspondingly. 

Particularly, we test the null hypothesis that there is no Granger Causality relationship in the 

system, for the above two VAR models. For each equation in the VAR models, the tables display 

(Wald) statistics for the joint significance of each and of all other lagged endogenous variables in 

that equation. Consequently, the results obtained from the VAR models, are confirmed as well in 

the Granger Causality analysis. 

 

Table 4.1: Pairwise Granger Causality Tests-Block Exogeneity Wald Tests 

    Dependent variable: LOG(Y) 
  Excluded Chi-sq df Prob. 

LOG(HICP) 9.968789 2 0.0068 

LOG(UN) 9.455642 2 0.0088 

CAY 3.256026 2 0.1963 

All 38.78238 6 0 

    Dependent variable: LOG(HICP) 
  Excluded Chi-sq df Prob. 

LOG(Y) 0.671763 2 0.7147 

LOG(UN) 3.015286 2 0.2214 

CAY 6.621385 2 0.0365 

All 23.48745 6 0.0006 

    Dependent variable: LOG(UN) 
  Excluded Chi-sq df Prob. 

LOG(Y) 7.232862 2 0.0269 

LOG(HICP) 7.188783 2 0.0275 

CAY 0.630585 2 0.7296 

All 13.1224 6 0.0411 

    Dependent variable: CAY 
   Excluded Chi-sq df Prob. 

LOG(Y) 1.171322 2 0.5567 
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LOG(HICP) 6.671691 2 0.0356 

LOG(UN) 10.25958 2 0.0059 

All 28.33065 6 0.0001 

Table 4.2: Pairwise Granger Causality Tests-Block Exogeneity Wald Tests 

    Dependent variable: LOG(Y) 
  Excluded Chi-sq df Prob. 

LOG(P) 4.7685 2 0.0922 

LOG(GB10Y) 2.66451 2 0.2639 

LOG(UN) 8.967688 2 0.0113 

LOG(XY) 4.79716 2 0.0908 

All 39.62806 8 0 

    Dependent variable: LOG(P) 
  Excluded Chi-sq df Prob. 

LOG(Y) 9.577332 2 0.0083 

LOG(GB10Y) 5.654132 2 0.0592 

LOG(UN) 2.955682 2 0.2281 

LOG(XY) 0.354617 2 0.8375 

All 33.45129 8 0.0001 

    Dependent variable: LOG(GB10Y) 
  Excluded Chi-sq df Prob. 

LOG(Y) 3.396451 2 0.183 

LOG(P) 3.188408 2 0.2031 

LOG(UN) 8.325613 2 0.0156 

LOG(XY) 3.194155 2 0.2025 

All 16.66993 8 0.0337 

    Dependent variable: LOG(UN) 
  Excluded Chi-sq df Prob. 

LOG(Y) 7.166373 2 0.0278 

LOG(P) 10.74706 2 0.0046 

LOG(GB10Y) 1.474215 2 0.4785 

LOG(XY) 2.795834 2 0.2471 

All 26.65596 8 0.0008 

    Dependent variable: LOG(XY) 
  Excluded Chi-sq df Prob. 

LOG(Y) 1.82696 2 0.4011 

LOG(P) 0.022648 2 0.9887 

LOG(GB10Y) 2.838917 2 0.2418 

LOG(UN) 7.838473 2 0.0199 
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All 14.68694 8 0.0655 

 

3.2.3 Cointegration Analysis 

Although the VAR results provide information about the short-run relationship between 

the macroeconomic variables, nevertheless we do not know what their long-run behaviour is. 

The VECM not only gives an answer to the question of whether the short-run relationship of the 

variables is persistent, but also allows us to perform forecasting. 

The estimation of the VECM requires first to test for the existence of cointegration. We 

follow the Johansen and Juselius (1990, 1992) approach which is based on canonical 

correlations. As we determine that the number of lags is two in the above VAR models then we 

should impose actually one lag in the VECM, in the cointegration test. The results are presented 

in Tables 5.1 and 5.2 for each model respectively. 

 

Table 5.1: Johansen Cointegration Test for Model 1 

Trend assumption: Linear deterministic trend (restricted) 
 Series: LOG(Y) LOG(HICP) LOG(UN) CAY  

  Exogenous series: D(LOG(OILP)) D(LOG(Y_EURO))  
 Warning: Critical values assume no exogenous series 
 Lags interval (in first differences): 1 to 1 

  

     Unrestricted Cointegration Rank Test (Trace) 

Hypothesized   Trace 0.05   

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 

None * 0.590825 118.229 63.8761 0 

At most 1 * 0.427183 58.35703 42.91525 0.0008 

At most 2 0.161393 21.02541 25.87211 0.1784 

At most 3 0.128726 9.232543 12.51798 0.1665 

      Trace test indicates 2 cointegrating eqn(s) at the 0.05 level   

     Unrestricted Cointegration Rank Test (Maximum Eigenvalue) 

Hypothesized   Max-Eigen 0.05   

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 

None * 0.590825 59.872 32.11832 0 

At most 1 * 0.427183 37.33162 25.82321 0.001 

At most 2 0.161393 11.79287 19.38704 0.4347 

At most 3 0.128726 9.232543 12.51798 0.1665 
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 Max-eigenvalue test indicates 2 cointegrating eqn(s) at the 0.05 level 
* denotes rejection of the hypothesis at the 0.05 level 

**MacKinnon-Haug-Michelis (1999) p-values 

Table 5.2: Johansen Cointegration Test for Model 2 

Trend assumption: Linear deterministic trend (restricted) 
 Series: LOG(Y) LOG(P) LOG(GB10Y) LOG(UN) LOG(XY)  
 Lags interval (in first differences): 1 to 1 

  

     Unrestricted Cointegration Rank Test (Trace) 

Hypothesized 
 

Trace 0.05 
 

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 

None * 0.526899 134.9179 88.8038 0 

At most 1 * 0.376983 84.77207 63.8761 0.0003 

At most 2 * 0.293844 53.06888 42.91525 0.0036 

At most 3 * 0.26001 29.75826 25.87211 0.0156 

At most 4 0.133276 9.58336 12.51798 0.1474 

      Trace test indicates 4 cointegrating eqn(s) at the 0.05 level   

          

Unrestricted Cointegration Rank Test (Maximum Eigenvalue) 

Hypothesized 
 

Max-Eigen 0.05 
 

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 

None * 0.526899 50.14586 38.33101 0.0015 

At most 1 0.376983 31.70319 32.11832 0.0561 

At most 2 0.293844 23.31062 25.82321 0.1037 

At most 3 * 0.26001 20.1749 19.38704 0.0384 

At most 4 0.133276 9.58336 12.51798 0.1474 

      Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level 
* denotes rejection of the hypothesis at the 0.05 level 

**MacKinnon-Haug-Michelis (1999) p-values 

 

Table 5.1 suggests that, taking into account the Trace Statistic and the Maximal 

Eigenvalue Statistic, we identify the existence of two cointegrating relationships in the four-

variable VAR with two exogenous variables at the 5%. Regarding Table 5.2, the Trace Statistic 

indicates the existence of four cointegrating relationships while the Maximal Eigenvalue Statistic 

of one cointegrating equation. Taking into consideration the Maximal Eigenvalue Statistic we 

proceed with one cointegrating equation at the 5% in the five variable VAR. 

As a result, since both models exhibit two and one cointegrating relationships between 

the variables respectively, we move a step further for the estimation of two VEC models which 
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require not only the variables to be linked in the short run, but to be related in the long run via 

the existence of cointegration. 

3.2.4 Vector Error Correction Estimation 

In this section we estimate a VECM model based on the four-variable VAR model with 

two exogenous variables in which we identify two cointegrating relationships. The specification 

of the first model follows: 

 

   1 11 1 2 3 1 4 1 5 1 6 1 12 1 2 3 1 4 1 5 1 6 1

11 1 12 1 13 1 14 1 15 16        +

t t t t t t t t t

euro y

t t t t t t t

y c c t c y c p c u c cay d d t d y d p d u d cay

y p u cay oil y

  

      

       

   

              

           

 

   2 21 1 2 3 1 4 1 5 1 6 1 22 1 2 3 1 4 1 5 1 6 1

21 1 22 1 23 1 24 1 25 26        +

t t t t t t t t t

euro p

t t t t t t t

p c c t c y c p c u c cay d d t d y d p d u d cay

y p u cay oil y

  

      

       

   

              

           

 

   3 31 1 2 3 1 4 1 5 1 6 1 32 1 2 3 1 4 1 5 1 6 1

31 1 32 1 33 1 34 1 35 36        + +

t t t t t t t t t

euro u

t t t t t t t

u c c t c y c p c u c cay d d t d y d p d u d cay

y p u cay oil y

  

      

       

   

              

          

 

   4 41 1 2 3 1 4 1 5 1 6 1 42 1 2 3 1 4 1 5 1 6 1

41 1 42 1 43 1 44 1 45 46        + +

t t t t t t t t t

euro ca

t t t t t t t

cay c c t c y c p c u c cay d d t d y d p d u d cay

y p u cay oil y

  

      

       

   

              

          

 

 

The VECM results are presented in Table 6.1. The two cointegrated equations summarize 

the long run behavior of the variables. The unemployment rate is related negatively with real 

GDP and HICP while the current account to GDP ratio is related positively with real GDP and 

negatively with HICP. 
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Table 6.1: Vector Error Correction Estimates of Model 1 

     Cointegrating Eq CointEq1 CointEq2     

LOG(Y(-1)) 1 0 

  LOG(HICP(-1)) 0 1 

  LOG(UN(-1)) 0.746981 0.033553 

  
 

[ 7.23459] [ 0.81463] 

  CAY(-1) -1.564394 0.712404 

  
 

[-2.04075] [ 2.32964] 

  @TREND(00Q1) -0.00067 -0.003704 

  
 

[-0.49522] [-6.86692] 

  C -9.48235 -4.250204     

     Error Correction: D(LOG(Y)) D(LOG(HICP)) D(LOG(UN)) D(CAY) 

CointEq1 -0.077591 0.014011 -0.138376 0.210679 

 
[-2.04041] [ 1.43840] [-1.33210] [ 4.37153] 

CointEq2 0.027445 -0.071297 0.459444 -0.483209 

 
[ 0.27927] [-2.83219] [ 1.71143] [-3.87973] 

     
D(LOG(Y(-1))) -0.299551 -0.03099 0.176936 -0.227474 

 
[-2.40563] [-0.97157] [ 0.52017] [-1.44144] 

D(LOG(HICP(-1))) -1.600233 0.415285 1.773348 0.588114 

 
[-4.19051] [ 4.24544] [ 1.70000] [ 1.21522] 

D(LOG(UN(-1))) -0.111685 0.016424 0.670524 0.007209 

 
[-2.63532] [ 1.51287] [ 5.79192] [ 0.13421] 

D(CAY(-1)) -0.126406 0.025325 -0.472863 -0.235765 

 
[-1.27743] [ 0.99908] [-1.74933] [-1.87998] 

C 0.006169 0.002647 -0.002563 0.000856 

 
[ 2.54542] [ 4.26319] [-0.38711] [ 0.27852] 

D(LOG(OILP)) 0.011489 0.0051 -0.057949 -0.008633 

 
[ 1.17603] [ 2.03811] [-2.17147] [-0.69728] 

D(LOG(Y_EURO)) 1.189203 0.08566 -1.003227 -1.116934 

  [ 4.20869] [ 1.18348] [-1.29975] [-3.11908] 

 R-squared 0.589426 0.760776 0.59974 0.503118 

 Adj. R-squared 0.532796 0.727779 0.544531 0.434583 

     
 Log likelihood 

 
869.6176 

  
AIC 

 
-24.5856 

  
 Schwarz criterion   -23.07193     

t-statistics in [ ] 
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Then we estimate a VECM model based on the five-variable VAR model in which we 

identify one cointegrating relationship. The VECM for model 2 follows: 

 

 1 1 1 2 3 1 4 1 5 1 6 1 7 1

11 1 12 1 13 1 14 1 15 1              +

t t t t t t

y

t t t t t t
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y p u gb exy
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         
 

 

 3 3 1 2 3 1 4 1 5 1 6 1 7 1
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t t t t t t
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t t t t t t
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         
 

 

 4 4 1 2 3 1 4 1 5 1 6 1 7 1

41 1 42 1 43 1 44 1 45 1              +

t t t t t t
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t t t t t t
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 5 5 1 2 3 1 4 1 5 1 6 1 7 1

51 1 52 1 53 1 54 1 55 1              +

t t t t t t

exy

t t t t t t

exy c c t c y c p c u c gb c exy

y p u gb exy
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     

    

    
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The VECM results are presented in Table 6.2. The one cointegrated equation indicates 

that the deflator is related positively with real GDP while the unemployment rate, the ten-year 

government bond and the exports to GDP ratio are related negatively with real GDP.  
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Table 6.2: Vector Error Correction Estimates of Model 2 

      Cointegrating Eq CointEq1         

LOG(Y(-1)) 1         

LOG(P(-1)) -1.813251 

    
 

[-8.22962] 

    LOG(GB10Y(-1)) 0.016916 

    
 

[ 0.64719] 

    LOG(UN(-1)) 0.061825 

    
 

[ 1.36445] 

    LOG(XY(-1)) 0.099599 

    
 

[ 1.24597] 

    @TREND(00Q1) 0.005125 

    
 

[ 3.62503] 

    C -3.384602 

                

Error Correction D(LOG(Y)) D(LOG(P)) D(LOG(GB10Y)) D(LOG(UN)) D(LOG(XY)) 

CointEq1 0.055303 0.134215 0.14339 -0.147515 -0.290079 

 
[ 1.51454] [ 6.23298] [ 0.43124] [-1.64083] [-1.96217] 

D(LOG(Y(-1))) -0.143866 -0.161535 1.113195 0.179324 1.041283 

 
[-0.93961] [-1.78903] [ 0.79842] [ 0.47569] [ 1.67976] 

D(LOG(P(-1))) 0.421395 -0.233928 1.673773 -0.484957 -0.017445 

 
[ 2.26105] [-2.12845] [ 0.98625] [-1.05686] [-0.02312] 

D(LOG(GB10Y(-1))) -0.018479 -0.008002 0.404505 0.052236 0.078965 

 
[-1.39882] [-1.02714] [ 3.36261] [ 1.60601] [ 1.47640] 

D(LOG(UN(-1))) -0.121881 0.088687 0.911171 0.52099 -0.008679 

 
[-2.32354] [ 2.86705] [ 1.90758] [ 4.03401] [-0.04087] 

D(LOG(XY(-1))) -0.048782 -0.00654 0.233285 -0.015115 -0.055453 

 
-0.03103 -0.0183 -0.28259 -0.07641 -0.12565 

C [-1.57189] [-0.35734] [ 0.82551] [-0.19781] [-0.44134] 

  -0.000323 0.003535 -0.015058 0.006599 0.004364 

       R-squared 0.407418 0.422743 0.27521 0.530699 0.102839 

 Adj. R-squared 0.34816 0.365018 0.202731 0.483769 0.013123 

      
Log likelihood 

 
739.4835 

   
AIC 

 
-20.85025 

   
 Schwarz criterion   -19.50111       

t-statistics in [ ] 
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3.2.5 Variance Decomposition Analysis 

Using the estimated models, which provide information for the long-run relationship of 

the variables, we perform Variance Decomposition Analysis which is a way to characterize the 

dynamic behavior of the models. Table 7.1 suggests that in the long run, the variation of real 

GDP depends also on shocks to other variables. Specifically, this percentage increases through 

time and, in the last period, 45% of the total change on the variance is due to the rest variables. A 

similar situation holds for the rest variables with a notable impact on current account to GDP 

ratio. 

 

Table 7.1: Variance Decomposition Analysis of Model 1 

       
Period 

Variance Decomposition of: LOG(Y) LOG(HICP) LOG(UN) CAY 

 
depending on: LOG(Y) LOG(HICP) LOG(UN) CAY 

1   100 81.93349 82.14983 83.0403 

2 
 

86.45101 74.43673 78.9368 73.58469 

3 
 

78.27917 70.02948 75.0162 58.1004 

4 
 

71.10336 66.91025 71.41415 46.73156 

5 
 

66.66653 65.24427 68.77732 38.692 

6 
 

63.25093 64.49884 66.9229 33.12338 

7 
 

60.79371 64.28488 65.63066 29.10132 

8 
 

58.81965 64.27218 64.68719 25.9204 

9 
 

57.24809 64.2428 63.96879 23.39324 

10   55.94111 64.02293 63.39974 21.32649 

 

The dynamic behavior of the second model is similar to that of the first. More 

specifically, Table 7.2 indicates that the impact on variance decomposition of the GDP deflator 

from other variables is very strong. Through time, the influence increases and in the last period, 

52% of the variation of GDP deflator is due to the other variables. Regarding the unemployment 

rate, the impact on its variation from the rest variables increases reaching a level of 39% in the 

last period. Finally, the variation of the rest three variables, namely the real GDP, the ten-year 

government bond and the exports to GDP ratio, depends also on shocks to other variables on 

average 20%-25% during the last period. 
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Consequently, in the long run, the link between the variables becomes more significant, 

since the variation of a variable is due not only to own, but to shocks from other variables too. 

Table 7.2: Variance Decomposition Analysis of Model 2 

        
Period 

Variance Decomposition of: LOG(Y) LOG(P) LOG(GB10Y) LOG(UN) LOG(XY) 

  depending on: LOG(Y) LOG(P) LOG(GB10Y) LOG(UN) LOG(XY) 

1 
 

100 86.58745 92.91475 80.99054 98.02334 

2 
 

93.21738 73.92174 90.94771 80.1267 93.34485 

3 
 

90.00836 70.40339 88.50224 76.73418 92.21756 

4 
 

87.9087 68.93714 86.56102 73.5492 91.91664 

5 
 

86.09093 67.29713 85.15449 70.83589 91.4441 

6 
 

84.65423 65.2412 84.15034 68.44148 90.87414 

7 
 

83.53245 62.48846 83.43355 66.30596 90.21641 

8 
 

82.62466 58.79223 82.91994 64.38511 89.45064 

9 
 

81.87602 54.18156 82.55039 62.64186 88.58277 

10   81.2477 48.90437 82.28425 61.05046 87.62429 

 

3.2.6 Forecasting Performance 

The VECMs are used to produce medium-term forecasts for main macroeconomic 

variables. According to the estimated models, we make forecasts for the endogenous variables 

for the next two years (eight quarters). Regarding the first model, we need to obtain forecasted 

values for the two exogenous variables, namely the oil prices and the real GDP of Eurozone. For 

this reason, we examine alternative univariate autoregressive models for each one of the two 

variables and choose the model with the minimum root mean squared error. So, for oil price we 

estimate an AR(3) specification while for the real GDP of Eurozone an AR(2) model. Then, we 

may estimate their eight-quarter ahead forecasts and use them in order to estimate the forecasted 

values of the endogenous variables. 

The estimated forecasts of the endogenous variables are presented in Table 8. This table 

displays the average of the growth rate of the seasonally adjusted real GDP, the growth rate of 

the HICP, the growth rate of the GDP deflator, the unemployment rate, the current account to 

GDP ratio and the exports to GDP ratio. All values are annually averages.  

In a second stage, following Anderson et al (2002), we assess the forecasting 

performance of the estimated VECMs. We estimate each model during the sample period 2000:1 

to 2014:4 and make forecasts for the next eight quarters. Then we compare the forecasted values 
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with actual data for the periods 2015:1 to 2016:4 and compute the corresponding RMSE 

criterion. These results are presented in the last column of Table 8. We may see that model 2 

performs better in terms of real GDP.  

 

Table 8: Forecasts 

    Model 1 

Variables 2017 2018 RMSE 

Real GDP seasonally adjusted -0.6% -0.08% 641.21 

HICP 1.5% 1.00% 2.86 

Unemployment rate 22.7% 23.1% 0.12 

Current accountto GDP ratio -1.6% -1.2% 0.01 

    Model 2 

Variables 2017 2018 RMSE 

Real GDP seasonally adjusted 0.61% 1.11% 649.15 

10-year government bond 6.87% 6.51% 2.15 

GDP deflator 0.7% 1.87% 4.12 

Unemployment rate 22.65% 22.62% 0.05 

Exports to GDP ratio 32.14% 32.22% 0.04 
Note: RMSE stands for Mean Squared Error. 

4. Conclusion 

This study has performed a forecasting exercise involving two time series datasets for 

Greece. Due to the identification of cointegrating relationships in the variables, short-term 

forecasts of GDP are estimated using Johansen’s VECM estimation method using an information 

set that proxies for the components of expenditure based GDP within an open economy 

framework. For this purpose, the models are estimated using quarterly data on real GDP, the 

GDP price deflator, HICP, unemployment rate, 10yr government bond rates, exports to GDP 

ratio and the current account to GDP ratio over the sample period 2000:1 to 2017:1. Then seven 

quarters out of sample forecasts are generated under each model framework. Moreover, we 

assess the forecasting performance of the estimated VECMs estimating each model during the 

sample period 2000:1 to 2014:4, making forecasts for the next eight quarters and comparing the 

forecasted values with actual data. In addition to the forecasts, an effort is made to examine the 

relationships among the variables. 
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Developing this research further could take into account the fact that the models 

presented here are linear by their nature, and therefore fail to take into account nonlinearities in 

the data. One of the responses to this problem within the literature has been the development of 

DSGE models, which are capable of handling both structural changes, as well as nonlinearities. 

The current trend in forecasting is dominated by the use of calibrated and estimated versions of 

DSGE models that have been shown to produce better forecasts relative to traditional forecasting 

methods in many cases (see, e.g, Zimmerman (2001)). Another potential area to further develop 

the work presented here, could be to pool together the information set into a panel of European 

countries. Within a panel VECM framework, the predictive ability of a candidate variable within 

the information set could be explored for the entire panel of countries. Analysis such as this may 

reveal potential interdependencies within the European group of countries. 
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